Blind multispectral image decomposition by 3D nonnegative tensor factorization.
نویسندگان
چکیده
Alpha-divergence-based nonnegative tensor factorization (NTF) is applied to blind multispectral image (MSI) decomposition. The matrix of spectral profiles and the matrix of spatial distributions of the materials resident in the image are identified from the factors in Tucker3 and PARAFAC models. NTF preserves local structure in the MSI that is lost as a result of vectorization of the image when nonnegative matrix factorization (NMF)- or independent component analysis (ICA)-based decompositions are used. Moreover, NTF based on the PARAFAC model is unique up to permutation and scale under mild conditions. To achieve this, NMF- and ICA-based factorizations, respectively, require enforcement of sparseness (orthogonality) and statistical independence constraints on the spatial distributions of the materials resident in the MSI, and these conditions do not hold. We demonstrate efficiency of the NTF-based factorization in relation to NMF- and ICA-based factorizations on blind decomposition of the experimental MSI with the known ground truth.
منابع مشابه
Nonlinear Band Expansion and 3D Nonnegative Tensor Factorization for Blind Decomposition of Magnetic Resonance Image of the Brain
αand β-divergence based nonnegative tensor factorization (NTF) is combined with nonlinear band expansion (NBE) for blind decomposition of the magnetic resonance image (MRI) of the brain. Concentrations and 3D tensor of spatial distributions of brain substances are identified from the Tucker3 model of the 3D MRI tensor. NBE enables to account for the presence of more brain substances than number...
متن کامل3D tensor factorization approach to single-frame model-free blind-image deconvolution.
By applying a bank of 2D Gabor filters to a blurred image, single-frame blind-image deconvolution (SF BID) is formulated as a 3D tensor factorization (TF) problem, with the key contribution that neither origin nor size of the spatially invariant blurring kernel is required to be known or estimated. Mixing matrix, the original image, and its spatial derivatives are identified from the factors in...
متن کاملA Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملA Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملNonnegative Tensor Factorization, Completely Positive Tensors, and a Hierarchical Elimination Algorithm
Nonnegative tensor factorization has applications in statistics, computer vision, exploratory multiway data analysis and blind source separation. A symmetric nonnegative tensor, which has an exact symmetric nonnegative factorization, is called a completely positive tensor. This concept extends the concept of completely positive matrices. A classical result in the theory of completely positive m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics letters
دوره 34 14 شماره
صفحات -
تاریخ انتشار 2009